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Abstract

We investigate the presence of irrelevant operators in the two-dimensional Ising
model perturbed by a magnetic field, by studying the corrections induced by
these operators in the spin—spin correlator of the model. To this end we perform
a set of high-precision simulations for the correlator both along the axes and
along the diagonal of the lattice. By comparing the numerical results with
the predictions of a perturbative expansion around the critical point we find
unambiguous evidence of the presence of such irrelevant operators. It turns out
that among the irrelevant operators the one which gives the largest correction is
the spin-4 operator T2 + T2, which accounts for the breaking of the rotational
invariance due to the lattice. This result agrees with what was already known
for the correlator evaluated exactly at the critical point and also with recent
results obtained in the case of the thermal perturbation of the model.

PACS numbers: 05.50.+q, 64.60.Fr, 75.40.-s

1. Introduction

Since the seminal work of Belavin et al [1] much progress has been made in the description
of two-dimensional statistical models at the critical point. In particular in all the cases in
which the critical point theory can be identified with one of the so called ‘minimal models’ a
complete list of all the operators of the theories can be constructed. Moreover, it is possible to
write differential equations for the correlators and in some cases find their explicit expression
in terms of special functions. Following these remarkable results, in recent years much effort
has been devoted to extending them also outside the critical point. This can be achieved by
perturbing the CFT with one (or more) of its relevant operators. Much less is known in this
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case. The most important result in this context is that for some particular choices of CFTs
and relevant operators these perturbations give rise to integrable models [2, 3]. In these cases
again we have a rather precise description of the theory. In particular it is possible to obtain
the exact asymptotic expression for the large-distance behaviour of the correlators [4]. From
this information several important results (and in particular all the universal amplitude ratios)
can be obtained.

Similar efforts have also been devoted to trying to study vacuum expectation values,
amplitude ratios and correlators involving irrelevant operators. However progress in this
direction is limited by the lack of results (both numerical and analytical) from actual statistical
mechanics realizations of the models.

The only notable exception to this state of the art is the two-dimensional Ising model. In
this case, thanks to a set of remarkable results on the two- and four-point correlators [5—7]
several interesting results on the contribution of irrelevant operators have been obtained both in
the case of the model at its critical point [8] and for T # T [9, 10] (i.e. for the theory perturbed
by the energy operator). Very recently these results have been used to study up to very high
orders the contribution of irrelevant operators to the magnetic susceptibility for T # T;. [10].
In this paper we shall try to extend this analysis to the case of the magnetic perturbation of the
Ising model. In particular, we shall look at the contributions due to irrelevant operators to the
spin—spin correlator in the presence of an external magnetic field. We shall mainly concentrate
on the energy—momentum tensor 7' T, and the operator T2+T? (which appear as a consequence
of the breaking due to the lattice of the full rotational symmetry) which are the most important
(i.e. those with smallest (in modulus) renormalization group eigenvalue) among the irrelevant
operators.

In this case there is no exact expression for the correlators or for the free energy of the
model and the only way that we have to judge the validity of the CFT predictions is to compare
them with the results of numerical simulations. Notwithstanding this there is a number of good
reasons to choose exactly this model and this observable. Let us look at them in detail.

e The Ising model in a magnetic field is known to be exactly integrable [3], thus, even
if it is not exactly solvable (although exact expressions for the free energy exist for the
spin-1 Ising model in a magnetic field [11]), much important information can all the same
be obtained; in particular very precise large-distance expansions exist for the correlators
and the vacuum expectation values of the relevant operators are known in the continuum
limit [12].

e The model is an optimal choice from the point of view of numerical simulations, since
very fast and efficient algorithms exist to study it.

e The model can also be realized as a particular case of the so called IRF (interaction round
a face) models [13]. In this framework several interesting results can be obtained on the
spectrum of the model [14].

e By looking at the spin—spin correlator instead of the susceptibility we may study the
effects of the non-zero spin operators which appear as a consequence of the breaking
of the rotational symmetry due to the lattice (see below for a precise definition). These
operators also appear in rotational invariant quantities like the susceptibility, but only at
the second order [15,16], i.e. at such a high power of the perturbing constant that they can
be observed only if the exact solution of the model is known (as in the papers [9, 10]) and
cannot be seen if one can only resort to numerical simulations.

e A very interesting result of [10] (which had already been anticipated 20 years ago by
Aharony and Fisher [17] and then observed in [18] for the one-dimensional Ising quantum
chain and in [19] for the two-dimensional square lattice Ising model) is that in the thermal
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perturbation of the Ising model the energy—momentum tensor 77 seems to be absent.
The first correction which involves irrelevant operators is thus due to the spin-4 operator
T? + T?. This result should also hold at the critical point, where it can be independently
observed by using transfer matrix methods [15]. However, apparently, it disagrees with
the explicit form of the correlator at the critical point (which is exactly known on the
lattice), which contains a scalar correction which can only be interpreted as due to the 7T
term. One of the aims of the present paper is to understand this puzzle.

e If one is interested in studying irrelevant operators it is mandatory to look at the short-
distance behaviour of the correlator. In this respect the natural framework in which one
must operate is the so called IRS expansion [20,21]. This approach has been recently
discussed in great detail [22] exactly in the case of the Ising model in a magnetic field in
which we are interested here. It is only by using the results of [22] as the input of our
analysis that we shall be able to reach the high level of precision which is needed in order
to observe the very small corrections which are the signatures of the irrelevant operators.

This paper is organized as follows. In section 2 we shall briefly summarize some known
results on the two-dimensional Ising model in a magnetic field. In section 3 we shall discuss
the most important contributions due to the irrelevant operators to the spin—spin correlators
and shall evaluate their magnitude and behaviour. In section 4 we shall present the numerical
simulations that we have performed and finally in section 5 we shall discuss the comparison
between numerical results and theoretical predictions. Section 6 is devoted to some concluding
remarks.

2. The two-dimensional Ising model in a magnetic field

We shall be interested in the following in the Ising model defined on a two-dimensional square
lattice of size L with periodic boundary conditions, in the presence of an external magnetic
field H. The model is defined by the following partition function:

7= Z By oioi+H X 00) 1)
(Ti::l:l

where the notation (7, j) denotes nearest-neighbour sites in the lattice. In order to select only
the magnetic perturbation, 8 must be fixed to its critical value:

B =P =1Llog(v2+1)=0.4406868....

By defining h; = B.H we have
7 = Z eﬂc Z(Lﬂ oioj+h; Y, o (2)
o;==1
The magnetization M (h) is defined as usual
1 0 1
Mh) = ——(og Z)|g—p. =(— i 3
(h) = 5 3-(log 2)ls—s, <sza> 3)

where N = L? denotes the number of sites of the lattice.
Equation (2) is the typical partition function of a perturbed critical model. With the choice
B = B. the only perturbing operator is

a,E%Zo,-. 4)
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We shall call o the spin operator in the following (more precisely the lattice discretization of
the spin operator). Notice that the mean value of o; coincides with M (h):

(1) = M(h). &)

Our goal in this paper is to study the contribution of the irrelevant operators to the spin—spin
correlator. To this end we shall first study the model at the critical point (section 2.1); we shall
then switch on the magnetic field (see section 2.2) and discuss the modifications that it induces
in the spin—spin correlator.

2.1. The Ising model at the critical point

2.1.1. Operator content. The Ising model at the critical point is described by the unitary
minimal CFT with central charge ¢ = 1/2 [1]. Its spectrum can be divided into three conformal
families characterized by different transformation properties under the dual and Z, symmetries
of the model. They are the identity, spin and energy families and are commonly denoted as
[1], [o], [€e]. Each family contains a ‘primary’ field (which gives the name to the entire
family) and an infinite tower of ‘secondary’ fields (see below). The conformal weights of
the primary operators are h; = 0, h, = 1/16 and h = 1/2 respectively. Thus we see that
in the Ising model the set of primary fields coincides with that of the relevant operators of
the spectrum (remember that the relationship between conformal weights and renormalization
group eigenvalues is y = 2 — 2h). This is a peculiar feature of the Ising model only, and is
not shared by any other minimal unitary model. Thus in this case the irrelevant operators are
bound to be secondary fields. Since in this paper we are particularly interested in the irrelevant
operators, let us study in more detail the structure of the three conformal families.

e Secondary fields.
All the secondary fields are generated from the primary ones by applying the generators
L_; and L_; of the Virasoro algebra. In the following we shall denote the most general
irrelevant operators in the [o] family (which are odd with respect to the Z, symmetry)
by the notation o; and the most general operators belonging to the energy [€] or to the
identity [/] families (which are Z, even) by ¢; and n; respectively. It can be shown that,
by applying a generator of index k: L_; or L_; to a field ¢ (where ¢ = I, €, o depending
on the case), of conformal weight &4, a new operator of weight 1 = hy + k is obtained. In
general any combination of L_; and L_; generators is allowed, and the conformal weight
of the resulting operator will be shifted by the sum of the indices of the generators used
to create it. If we denote by n the sum of the indices of the generators of type L_; and
by 7 the sum of those of type L_;, the conformal weight of the resulting operator will be
hg +n +n. The corresponding RG eigenvalue willbe y =2 — 2hy —n — 1.

e Non-zero spin states.
The secondary fields may have a non-zero spin, which is given by the difference n — n.
In general one is interested in scalar quantities and hence in the subset of those irrelevant
operators which have n = n. However, on a square lattice the rotation group is broken
down to the finite dihedral subgroup D4. Accordingly, only spin 0, 1, 2, 3 are allowed
on the lattice. If an operator ¢ of the continuum theory has spin j € N, then its lattice
discretization ¢; behaves as a spin j (mod 4) operator with respect to the C4 subgroup.
As a consequence all the operators which in the continuum limit have spin j = 4N with
N anon-negative integer can appear in the lattice discretization of a scalar operator.

e Null vectors.
Some of the secondary fields disappear from the spectrum due to the null vector conditions.
This happens in particular for one of the two states at level 2 in the o and € families and
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for the unique state at level 1 in the identity family. From each null state one can generate,
by applying the Virasoro operators, a whole family of null states, hence at level 2 in the
identity family there is only one surviving secondary field, which can be identified with
the stress energy tensor T (or T').

e Secondary fields generated by L_.
Among all the secondary fields a particular role is played by those generated by the L_;
Virasoro generator. L_; is the generator of translations on the lattice and as a consequence
it has zero eigenvalue on translational invariant observables.

o Quasiprimary fields
A quasiprimary field |Q) is a secondary field which is not a null vector (or a descendent
of a null vector) and satisfies the equation

Li]Q) =0. (6)
These fields play a central role in our analysis since they are the only possible candidates
to be irrelevant operators of the model?.
By imposing equation (6) it is easy to construct the first few quasiprimary operators for
each conformal family. For our analysis, however, the two lowest ones are enough. They
both belong to the conformal family of the identity. Their expression in terms of Virasoro
generators is

0y =L )
01 =2, —3iLp) ®)
(we use the notation Q, to denote the quasiprimary state at level n in the 1 family).

From these fields we can construct two irrelevant operators, which both have conformal
weight 4 and RG eigenvalue —2.

(1) The first combination is Q; Q;, which has spin zero and can be identified with the
energy—momentum tensor 77 .

(2) The second combination is Qi + Q_}‘, which has spin 4 and can be identified with the
combination T2 + T2.

This last contribution appears as a consequence of the breaking of the full rotational
invariance due to the lattice*.

2.1.2.  Structure constants. Once the operator content is known, the only remaining
information which is needed to completely identify the theory is the OPE constants. The
OPE algebra is defined as

D;(r)®;(0) = Y Cl (1) Dy (0) ©)
{k}

3 The reason is that non-quasiprimary fields can always be rewritten (using, if needed, the null vector identities)
as L_j acting on some combination of Virasoro generators, and thus their contribution in the perturbed action is
zero. Notice however that this does not mean that these states do not exist; it is only when they are integrated over
the two-dimensional plane that they give a vanishing contribution. Indeed, if we look at the model in the transfer
matrix framework, we see that the spectrum also contains non-quasiprimary states. This fact may have an important
consequence if one looks at the Ising quantum chain model (which belongs to the same universality class as the
two-dimensional Ising model). In this case it has been claimed (see for instance [18]) that non-quasiprimary fields
also contribute to the scaling function. For an updated review on quantum spin chains, and their CFT description,
see [23].

4 Notice that if we were interested in scalar quantities this term would disappear even on the lattice at first order and
could contribute only at second order. This is the case for instance of the susceptibility recently discussed in [10], in
which this operator gives a contribution only at order #* and not 2. However in the present case since we are interested
in a correlator, which defines a preferential direction on the lattice, this term can contribute already at first order. This
fact will be discussed in detail in section 2.1.5 below.
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where with the notation {k} we mean that the sum runs over all the fields of the conformal
family [k]. The structure functions Ci"j (r) are c-number functions of r, which must be single
valued in order to take into account locality. In the large-r limit they decay with a power-like
behaviour

Cly(r) ~ ||~ (10)
whose amplitude is given by
¢k = lim Cf(r) | Am(CE) (11)

Several of these structure constants are zero for symmetry reasons. These constraints are
encoded in the so-called ‘fusion rule algebra’, which, in the case of the Ising model, is

[elle]l = [1]
[o]le] = [0] (12)
[ollo] = [1] + [€].
By looking at the fusion rule algebra we can see by inspection which are the non-vanishing
structure constants.
The actual value of these constants depends on the normalization of the fields, which can

be chosen by fixing the long-distance behaviour of, for instance, the oo and €€ correlators. In
this paper we follow the commonly adopted convention, which is

(0(x)0(0) = — x| = o0 13)
x4
1
(e(x)e(0)) = W |x| = oo. (14)
With these conventions we have, for the structure constants among primary fields,
Co=Cl=C,=0 (15)
Cl,=C=Cl . =C =1 (16)
and
Co =¢c, =1L (17)

2.1.3. Continuum versus lattice operators. Our main interest in this paper is the spin—spin
correlator on the lattice. This raises the question of the relationship between the lattice and
the continuum definitions of the operator o. In the following we shall denote the lattice
discretization of the operators with the index /. Thus o denotes the continuum operator and o;
the lattice one.

In general the lattice operator is the most general combination of continuum operators
compatible with the symmetry of the lattice one. If we are exactly at the critical point this
greatly simplifies the analysis, since only operators belonging to the [o'] family are allowed.
Moreover (due to the peculiar null state structure of the spin family) the first quasiprimary
operator in the spin family appears at a rather high level and can be neglected in our analysis.
Thus as long as we are interested only in the critical point the spin operators on the continuum
and on the lattice are simply related by a normalization constant, which we shall call in the
following R,. The simplest way to obtain R, is to look at the analogue of equation (13) on
the lattice. This is a well known result [24], which we report here for completeness. The
large-distance behaviour of the correlator at the critical point is

K
gl

(0i0 ) h=0 (18)
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where r;; denotes the distance on the lattice between the sites i and j and

R2 =¥ 02524 = 0.70338.... (19)
By comparing this result with equation (13) we find
o, =R,0 =0.83868...0. (20)

2.1.4. The lattice Hamiltonian at the critical point. The last step in order to relate the
continuum and lattice theories at the critical point is the construction of the lattice Hamiltonian
(let us call it Hi,) at the critical point. As above, the lattice Hamiltonian will contain all the
operators compatible with the symmetries of the continuum one. In this case all the operators
belonging to the [o] family are excluded due to the Z, symmetry. The operators belonging to
the [e] family are also excluded for a more subtle reason. The Ising model (both on the lattice
and in the continuum) is invariant under duality transformations, while the operators belonging
to the [€] family change sign under duality, thus they also cannot appear in Hy, (+ = 0). Thus
we expect

Hyy = Herr +u? / d%x n; n; € [I] 2D

where Hcgr is the continuum Hamiltonian and the u? are constants. As mentioned above we
can keep in this expansion only the first two terms, which are respectively TT and T2 + T2.

2.1.5. The spin—spin correlator on the lattice at the critical point. 'We have already presented
above, in equation (18), the large-distance expansion of the spin—spin correlator on the lattice
at the critical point.

Thanks to the exact results obtained in [5-7] (see [25] for a review), we have much more
information on this correlator at the critical point. In order to discuss these results let us first
introduce a more explicit notation for the spins. We shall denote in the following by o v the
spin located at the site with lattice coordinates (M, N). By using the translational invariance
of the correlator we can always fix one of the two spins at the origin. Thus the most general
correlator can be written as (09 0o, ). A particular role will be played in the following by
the correlator along the diagonal, (o oon, n), and the one along the axis, (00,000 n)-

Among the various results on the critical correlators two are of particular relevance for us.

e Remarkably enough, exact expressions exist for the correlator both along the diagonal and
along the axis for any value of N. These expressions are rather cumbersome and we shall
not report them here. They can be found in [25].

e An asymptotic expansion exists for large values of the separation r;;. For a square lattice,
the first three terms have been explicitly evaluated in [8].

This expansion takes the following form (for further details see [8]):

log(oo,0om,n) =log A — {logr + A1 (O)r 2 + A2 (O)r~* + A3(@)r *+0(r™®) (22)

where
A1(0) = 278(—1 +3cos40)
A>(0) = 273(5 4+ 36 cos 40 + 36 cos 86) (23)
A3(0) = 3712719(—524 — 324 cos 46 + 24 732 cos 80 + 28 884 cos 120)

and
r’=5%(M*+N?
M =r~/2sin6 (24)
N =r ~/2cosf.
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In the following we shall only be interested to the first correction since higher-order corrections
are beyond the resolution of our data. Hence we end up with

A _3 2
(c0.00m N) = 1—/4(1+2 (—1+3cos46) r +) (25)
r

Remarkably enough this expansion perfectly agrees with what one finds by assuming the
presence in the Hamiltonian of the model of the two irrelevant operators discussed in
section 2.1.1. In fact both 77 and T2 + T? have RG eigenvalue —2, thus, if they are present,
they should contribute to the correlator exactly with a term proportional to 1/R?. Moreover we
expect that the T2 + T2 operator, which has spin 4, should give a term proportional to cos(46)
while the scalar operator T T should give a contribution without 6 dependence. This is exactly
the pattern that we find in equation (25) (see for instance p 218 of [26] for a detailed discussion
of this point). However this remarkable agreement also raises a non-trivial problem. In fact the
high-precision analyses of [10, 15, 18] clearly exclude the presence in the lattice Hamiltonian
of the T'T operator (while they both confirm that the T2 + T2 is indeed present). It is thus not
clear what could be the origin of the scalar term in equation (25). A possible solution to this
puzzle is to notice that the results of equation (25) and those of of [10, 15] are obtained with
two different choices of the coordinates of the two-dimensional plane.

In fact equation (25) is written in terms of the ‘continuous’ variable r (which is the one that
we must choose if we want to match the lattice results with the continuum limit ones). Both the
results of [10] and [15] are instead obtained in the ‘lattice reference frame’ (which is the most
natural variable on the lattice), in which there is no /2 when comparing the distances along
the axes and along the diagonals. Hence, to compare the correction to the spin—spin correlation
function with the findings of [10, 15] we must rewrite (25) in terms of lattice coordinates. This
can be easily performed by using the relations (24).

After some algebra we obtain

e axis correlator

A28 1
((T()_()(T()’N) = W (1 + 6_4 Nf2 + O(N3)) (26)
e diagonal correlator
A L -3
<GO,OUN,N) = W <1 — a N +O(N )) . (27)

These same expansions can also be obtained by looking directly at the exact lattice results for
the correlators (see for instance [25], where these 1/N? terms are obtained in full detail).

Looking at equations (26) and (27) we see that with the lattice choice of coordinates the
1/N? term exactly changes its sign as we move from the axis to the diagonal. This is exactly
what one would expect for the contribution of a spin-4 operator, and thus it is apparent from
equations (26) and (27) that no scalar correction appears at order 1/N?, in perfect agreement
with the results of [10, 15, 18].

It is only the change of coordinates of equation (24) which induces in the continuum limit
a scalar term (which we may well identify in this limit with a T'T type contribution).

2.2. Adding the magnetic field

2.2.1. The continuum theory. The continuum theory in the presence of an external magnetic
field is represented by the action

A=Ay+h / d*x o (x) (28)
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where A is the action of the conformal field theory.
As a consequence of the applied magnetic field the structure functions acquire an &
dependence, so we have in general

@;(r)®;(0) = Y I (h, r) D1y 0). (29)
{k}

Also the mean values of the o and € operators acquire a dependence on k. Standard
renormalization group arguments (for an updated and thorough review on renormalization
group theory applied to critical phenomena see [27]) allow one to relate this & dependence to
the scaling dimensions of the operators of the theory and lead to the following expressions:

() = Agh's +-- - (30)
(€ = Ach®s +--- . 31)
The exact value of the two constants A, and A, can be found in [28] and [29] respectively
202
o= ———— 5. = 1.27758227. .. (32)
15 (sin 5 + sin 5- + sin 5)
with
4
_4sinIr(d) (4712F(%)F2(}—2)>5 )
= 2 8 1 3
Fras) LD (5)
and
A, =2.00314---. (34)

2.2.2. Continuum versus lattice operators. In the presence of a magnetic field the fields
belonging to the energy and identity families can also appear in the relation between the lattice
and the continuum version of the spin operator. The most general expression is

o1 = f (h)o +hy f (h)e + f7 (h)oi + by £ (h)ei + hy ] (h)n; ieN (35)
where f7(h;) f(h;) and fil (h;) are even functions of /;. By the notation o;, €; and n; we
denote the secondary fields in the spin, energy and identity families respectively. This is the

most general expression; however, as a matter of fact, only the first term is relevant for our
purposes (all the higher terms give negligible contributions)

01 = R,0 + hpe. (36)

The determination of p; is rather non-trivial. We shall discuss it in the appendix. It turns out
that

p1 ~ 0.0345. (37)

It is also important to stress that the lattice and continuum values of the magnetic field do not
coincide but are related by

h; = Ryh (38)
with R, = 1.1923... (see [22] for details).

2.2.3. The lattice Hamiltonian. —As happened for the conversion from o to oy, also in the
construction of the perturbed Hamiltonian on the lattice, several new operators belonging to
the energy and spin family must now be taken into account. However it turns out that all the
quasiprimary fields of these two families appear at a rather high level and can be neglected
in the present analysis. Thus, as far as we are concerned, the only effect of switching on the
magnetic field is that the constants in front of the 77 and T? + T2 terms in equation (21)
acquire an & dependence. For symmetry reasons these must be even analytic functions of 4.
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2.2.4. The spin—spin correlator. The short-distance behaviour of the spin—spin correlator
in the presence of a magnetic field can be obtained by using the so-called IRS approach. A
detailed discussion of this approach can be found in [20, 21]; the particular application to the
Ising correlators is discussed in [22], to which we refer for details. Here we only list the results.
Setting t = |h| |r|'3/® we have up to O(t?)

(o) (M)|r|V/* = B,, + B2t + B] 1'/" + O(1%) (39)
with

By =Cpp =1

B2, =A.CS, =1.00157... (40)

B3, = A,8,Co, =—0.51581....

This result holds in the continuum theory. By using the known conversion between
continuum and lattice units we can obtain the spin—spin correlator on the lattice:

(01001 () |ri;|V* = BL, + B2 1" + B2, /" + 0@} 1)

oo,l oo,l

where r;; is the distance between the two spins on the lattice, measured in units of the lattice

spacing, ; is defined as #; = || |r,<j|15/8 and
B,,,=0.703384...
BZ,, =0.641409... (42)
B),, =-0300749....

In the next section we shall see which contributions must be added to this expression as a
consequence of the irrelevant fields.

3. Contribution from irrelevant operators to the spin—spin correlator in the presence of
a magnetic field

There are two main sources of contributions due to irrelevant operators to equation (41) above.
They have different origins and contribute in different ways to the spin—spin correlator. The
first correction can be understood as a perturbative contribution to the spin—spin correlator due
to irrelevant operators. We shall discuss it in section 3.1. The second correction arises from
the new terms in the relation between o; and o, due to the presence of a magnetic field. We
shall discuss it in section 3.2.

3.1. Irrelevant operators in the perturbed Hamiltonian

The contributions to the scaling function due to the (possible) presence of additional irrelevant
operators in the lattice Hamiltonian can be studied by means of standard perturbative
expansions around the CFT fixed point. In order to address the problem in the presence
of an external magnetic field we must consider the CFT pertaining to the critical Ising model
as perturbed by a mixed relevant/irrelevant perturbation. Hence there will appear correction
terms to the scaling behaviour which both depend on the external magnetic field and show
a non-trivial (i.e. non-scaling) dependence on the spin—spin distance r;;. Moreover, if the
irrelevant operator in which we are interested breaks the rotational invariance (and this is the
case for instance of the (T2 + T?) operator discussed above) we must expect a dependence
on the angle 6 between the principal axes of the lattice and the direction of the correlator.
General symmetry arguments and dimensional analysis strongly constrain these terms. If we
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keep in our analysis only the first two irrelevant operators 7T and (T2 + T'?) the most general
expression for the scaling function turns out to be

<1 —1 +ah? (3+a2h2)cos(49)>

(01(0)01 () |rij|'* = B,

oo |rij 1> |rij1?
b6 0
w82 (14 20 548 (14 5D ) o5 4 00 43)
' Irij? ’ Irij|?
where a; and a, are unknown constants and b(6) and ¢(0) are unknown functions of the form
b(0) = by + by cos(46) (44)
c(0) = ¢ + crcos(40) (45)

in the angular variable 6. Let us analyse the above corrections in detail.

Correction to B} ,. At the lowest order in the irrelevant coupling, we can identify a scalar
correction proportional to |r;;|~* and a spin-4 correction proportional to cos(46) |r;;| 2. Both
these terms acquire an & dependence due to the magnetic relevant perturbation. The most
general expression compatible with the symmetries of the model is

( Pi(h) Py(h) cos(49))
1+ +

Bl
Irij? Irij?
i i

ool

(46)

where P;(h) and P,(h) are even polynomials in the magnetic field &, which in the 7 — 0
limit must agree with the asymptotic expansion reported in equation (25). Expanding the
polynomials up to the first term in 4 we find

Pi(h) = —1 + a h?

Py(h) = 3 + ah? “7

from which the first term in equation (43) follows. It is easy to see that the terms proportional
to a; and a, are highly suppressed due to the 42 power. They behave as the O(¢?) that we have
systematically neglected in the previous section. As a matter of fact we have not been able to
see these terms in our numerical data and we shall neglect them in the following.

Corrections to B2, and B} ,. Following the same line as discussed above we find in this
case
b(0)
2 8/15
Bw,, <1 + 5 )4
Irij]

3 @)\ 1615
B(ld,l <1 + |rij|2 tl

where b(6) and c(0) are the most general mixture of scalar and spin-4 terms. They can be
expanded in powers of cos(46). Keeping only the first two orders in the expansion we end up
with the expressions reported in equations (44) and (45), where by, b,, c| and ¢, are unknown
constants.

While the term proportional to ¢(6) cannot be detected within the precision of our data
(we shall further discuss this point at the end of the next section), the magnitude of the one
proportional to b(0) is definitely larger than our numerical uncertainties. Thus we expect to
be able to observe such a correction.

(48)
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3.2. Irrelevant operators in o;

We have seen above (see equation (36)) that in the presence of a magnetic field the
relation between lattice and continuum spin operator becomes more complicated and a term
proportional to he appears. Strictly speaking € is not an irrelevant operator; however, this is
only an accident: the following terms (those that we neglect) in the correspondence between
o; and o would indeed be irrelevant operators. Moreover, exactly as happens for the irrelevant
operators, the he term also gives a subleading contribution to the spin—spin correlator. For
these reasons we have also included this correction in this paper.
Inserting equation (36) in the spin—spin correlator we find

(01(0)01(r)) = R2(0(0)o () + 2h Ry p1 {0 (0)e(r)) + h* p{e(0)e(r)).  (49)

Since we are interested in keeping only terms below O(#?) the last term in equation (49) can
be neglected. Using the known result (see [22] for details)

(0 (0e)|r® = BL1"" + BZ 1 + B) 17/ + O(°V/") (50)
with

B!, =A,C% =0.63879...

B2, = 8,C1, =3.29627. .

B}, = A.9,CS, = —1.82085...
we can rewrite equation (49) as

(01(0)0; (M) |r|* = R2(B!  + B2 %13 + B3 +'%/1%)
+2h Ry py|r|7B(BL 1V + B2t + B2 17/1). (51

Only the first term in the second line of equation (51) gives a contribution below O(¢?), thus
we end up with

(01(0)0y (M) |r|* = R2(BL, + B2t + B2_t'%/'9) + 2R, pyt|r|72/3 B! 1'/13. (52)

We see that the new term can be considered as a correction, proportional to ‘rl%/g to the
t'%/15 term of equation (41):

5
(0100 (M) ri; |+ = B, + B2, i

oo,l
+(R2B2, + 2R, p1|r|"2/3 B! )/ R4/ + O(tD). (53)
Inserting the values of the various constants and of p; we end up with
(@O0 (M) |rij |4 = Bl + B2, )" + (B2, +aslr| 728" + 0@t} (54)

with a3 = 0.0307....

Unfortunately this new contribution is too small to give a reliable signature within the
precision of our data. In fact the amplitude of the correction as|r|~%/ 8t116/ 15 for distances
greater than one lattice spacing is always below (or at most of the order of) 10~* and cannot
be disentangled from the other sources of corrections within the precision of our data, which
ranges from 107> to 10~*. The situation is very similar to that of the correction proportional
to ¢(0) discussed in the previous section, which in fact has the same ¢ dependence.

However it is interesting to observe that both these corrections are almost on the threshold
of observation, and it is perfectly possible that with the next generation of simulation they
could be detected. For this reason we also included their analysis in this paper.
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4. The simulation

We studied the model with a set of Monte Carlo simulations using a Swendsen—Wang type
algorithm, modified so as to take into account the presence of an external magnetic field.
We used the same program and simulation setting as [22], to which we refer for a detailed
discussion of the performances of the algorithm and of finite-size effects. We simulated the
model for 12 different values of the magnetic field, ranging from &; = 4.4069 x 10~* to
h; = 8.8138 x 1073,

For all the values of h; that we simulated, we studied the correlator (o (0)o (r)), for
r =1,..., 10, both in the diagonal direction and along the axes. This is an important feature
of the present analysis, since it is exactly by comparing the correlator along the axes with the
diagonal one that we can extract the spin of the perturbing operators.

For all the simulations the lattice size was chosen to be L = 200 (the analysis of [22]
shows that for all the values of 4; that we studied this is enough to avoid finite-size effects).
Each two measures of the correlators were separated by five SW sweeps. For each single
correlator we performed 4 x 10° measures. The values of 4, that we studied are reported in
table 1, where we have also listed for completeness the corresponding values of the correlation
length &. This quantity is very important, since it defines in a quantitative way what we mean
by ‘short-distance behaviour’. Short distance means ‘smaller than the correlation length’. This
is in fact the regime in which we expect that the IRS analysis should hold and in which we
may hope to observe effects due to the irrelevant operators. £ is given (in lattice units) by

E(h)) =0.24935...h, © (55)

(see [30] for details of this equation and of the continuum to lattice conversion of &).

Table 1. The values of /; (measured in units of ;) that we studied and the corresponding correlation

lengths.

h[ f hl S
0.001 154 0.007 5.4
0.002  10.6 0.008 5.1
0.003 8.5 0.009 4.8
0.004 73 0.01 4.5
0.005 6.5 0.015 3.6
0.006 59 0.02 3.1

5. Comparison between predictions and numerical results

Let us start this section by writing the expression that we expect for the spin—spin correlator
in a magnetic field, according to the analysis performed in sections 2 and 3 above. We have

(01(0)1 (M) iy |+ = (01001 ()=l + (al + T:(TZ) +e ) i
ij

by (0
+ <b1 + |2(|2) T > 1" + 0@ (56)
rij
where (07(0)0;(r))n=olrij|"/* is given by equation (25); a; = BZ,, and by = B}, while
a»(0) and b,(0) are in principle unknown functions of the angular variable 6.
In this section we shall compare this expression with our numerical estimates for the

correlators along the diagonal and the axis. This will allow us to obtain a rather precise
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estimate of the function a,(0) in the two cases & = 0 and 7 /4. With these two pieces of
information we shall also be able to study the spin content of the operators which generate
this contribution. In the following we shall confine ourselves to the study of a,(0) since the
precision of our data is not sufficient to also extend our analysis to the function b,(6). We
performed our analysis in three steps.

(1) As a first step we constructed the combinations
G (r, hy) = (01(0)01(r)) — (61(0)07 () =0 (57)

using the fact that the critical point correlator is exactly known. Thus we have

0 by (0
G2 (r, hy)|rij|* = (al + 2 )+-.-> P (bl + 2 +> 1Y 0. (58)

Irij]? Irij?

(2) Then we study, at a fixed value of r, the h; dependence of G2(r, h;). According to
equation (58) above we should choose as the fitting function

GA(F, b)) = AR + Bk (59)

(the notation 7 indicates that we are fitting at a fixed value of |r;;|). However keeping only
the first two terms in the scaling function of the correlator is too rough an approximation.
Within the range of values of 4; that we have studied and with the precision that we have
obtained, this choice in general leads to very high x? values. Fortunately, thanks to the
IRS analysis we know the functional form of the next to leading orders in the /; expansion
of the correlator. It turns out that adding one more term is enough for the correlators
ranging from 1 to 7 lattice spacings along both the axis and the diagonal directions, while
for the remaining correlators we have to go up to the fourth term in the expansion. The
general form of the scaling function at this order turns out to be

G2 b)) = AORYY + BER Y + " + DR (60)

(see [22] for a discussion of this scaling function and the origin of the two new exponents
h?o/ ' and h?z/ 15). In this way for all the values of r we found good confidence levels.
The values of A(r) that we obtained in this way can be found in table 2. Notice that the
data in each fit are completely uncorrelated since they belong to different simulations. In
order to give an idea of the quality of the fits we have reported in figure 1 as an example
the fit for the value r = 1 along the axis.

(3) Asalaststep we address the r dependence of the function A (7). According to equation (58)
we expect the following behaviour:

)
—r3/4 =a+ 2

(61)

Fixing a; to its known IRS value we end up with a one-parameter fit, which in both cases of
0 = 0 and 7 /4 has a very good confidence level (see figures 2 and 3).
Our final results are:

e axis correlator
a2(0) = (—0.062 £ 0.004); (62)
e diagonal correlator

ay(w/4) = (—0.014 £ 0.007). (63)
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G

0.05}F

0.002 0.004 0.006 0.008 0.01 0.012

Figure 1. Fit of G2 (7, h;) according to equation (60) in the case of the correlator along the axis
for 7 = 1. The errors of the data are not reported since they are smaller than the symbols.

These results, and in particular the fact that we have different corrections in the two directions
(this difference is clearly visible by comparing figure 2 with figure 3), unambiguously show
that the contribution is at least partially due to a spin-4 operator. The natural candidate for this
role is again the 72 + T2 operator. Our result also suggests that a scalar operator is present
in the game. We see two possible reasons for this contribution. The first is that, since we are
working in the IRS framework, we are compelled to use the ‘continuum limit reference frame’.
As we have seen in section 2.1.5 this choice induces a 7T term and consequently a scalar type
correction. The second is that one cannot exclude the presence in the magnetic scaling field of
a (rotationally invariant) momentum-dependent term, which would manifest itself exactly as
a scalar correction of the type that we observe’. This non-trivial possibility has been recently
discussed in [16] (see the note on p 8161) to explain the corrections of order 12 (where ¢ is the
reduced temperature) in the second moment of the spin—spin correlator. Most probably both
mechanisms are at work in the present case. We cannot distinguish between them within the
precision of our data.

Table 2. Values of the first coefficient in equation (60) as a function of the lattice spacing N.

N AaxiS(N) Adiag(N)
1 (0.581£0.003) (0.823 & 0.003)
2 (1.048£0.004) (1.396 £ 0.004)
3 (1.446 £0.005)  (1.894 £ 0.005)
4 (1.80240.005) (2.354 + 0.007)
5  (2.134£0.006) (2.777 £ 0.008)
6  (2.448+0.006) (3.19%0.01)
7 (27746 £0.007)  (3.58 £0.01)
8  (3.039+£0.009)  (3.96 £0.01)
9 (3.316£0.009) (4.32£0.03)
10 (3.58£0.01) (4.67 £0.04)

5 We thank A Pelissetto for pointing out to us this interesting possibility.
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0.05}F

0.04¢

0.03¢

Figure 2. Fit of the difference D(N) = a; — % in the case of the correlator along the axis.

Notice the strong 1/N? correction for small values of N (see equation (61)). For large N the data
smoothly converge to the asymptotic value a; = 0.641409. ...

D (N)
0.06

0.05¢
0.04+1
0.03¢
0.02+¢

0.01}

Figure 3. The same as figure 2, but for the correlator along the diagonal. By comparing with
figure 2 one can easily see that the 1/N? correction has different magnitudes in the two cases.

6. Concluding remarks

The role of the irrelevant operators in the two-dimensional Ising model has attracted much
interest in recent months due to the results on the magnetic susceptibility at 4 = O recently
reported in [9, 10]. While it is by now clear that contributions due to irrelevant operators are
present in the free energy of the Ising model at 4 = 0, nothing is known about the case in which
the magnetic perturbation of the critical model is chosen. Moreover the characterization of
these irrelevant operators and, possibly, their identification with quasiprimary fields of the Ising
CFT is still an open problem. In this paper we tried to make some progress in this direction.
We studied the corrections induced by the presence of irrelevant operators in the spin—spin
correlator of the two-dimensional Ising model in the presence of an external magnetic field.
Our main results are:

e The 1/r? corrections which are present in the correlator at the critical point also survive
unchanged if the magnetic field is switched on. The h-independent part of this contribution
is much larger than our statistical errors and can be observed very precisely. Itis completely
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due to the spin-4 irrelevant operator.

e Several new terms appear when the magnetic field is switched on. By using standard
perturbative methods one can evaluate the amplitude of the corrections that they induce in
the spin—spin correlator. In general these terms are very small. However in one case the
amplitude of the expected correction turned out to be definitely larger than our statistical
errors. This is the case of the term proportional to

1 (8/15
rI17 ( 2 ) “

for which we could indeed observe and measure such a correction with good confidence.
The comparison between the two values of this correction for the correlator along the
diagonal and that along the axis shows that, besides the expected contribution due to the
spin-4 (T2 + T?) operator, there is also a scalar term, which may have a twofold origin.
This could be due to the T'T operator, but it could also be the signature of a momentum-
dependent term in the magnetic scaling field of the model.

Other contributions due to these or other irrelevant operators are for the moment beyond
our resolution, but it may be possible to observe them in the next generation of simulations.
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Appendix. Determination of p;

The simplest way to fix the value of p; is to look at the expectation value (o7). We expect
(01) = Ry (o) + pi(€) (A.1)

from which we have (using the notation of [30])

(01) = Ry Ayh™ + pyAgh™s (A2)

from [30] we see that
L 23

(o1) = 1AL RIS + AL AL RS (A.3)
Using the numerical values reported in [30], i.e.

Al =0.9927995 ... (A4)

Al ~0.021... (A.5)
we obtain

p1 ~ 0.0345. (A.6)
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